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4 Mutual Information and Channel Capacity

In Chapter 2, we have seen that entropy is used to measure the amount
of randomness in a random variable. In this chapter, we introduce several
more information-theoretic quantities. These quantities are important in
the study of Shannon’s results such as the calculation of channel capacity.

4.1 Information-Theoretic Quantities

Definition 4.1. Recall that, the entropy of a discrete random variable X
is defined in Definition 2.41 to be

H (X) = −
∑
x∈SX

pX (x) log2 pX (x) = −E [log2 pX (X)] . (19)

In this chapter, as in the previous chapter, X denotes the channel input.
Recall that, in Section 3.1, SX and pX(x) is denoted by X and p(x), respec-
tively. Under such notations, (19) becomes

H (X) = −
∑
x∈X

p (x) log2 p (x) = −E [log2 p (X)] = H
(
p
)

(20)

and, similarly, for the channel output Y , we have

H (Y ) = −
∑
y∈Y

q (y) log2 q (y) = −E [log2 q (Y )] = H
(
q
)
. (21)

Definition 4.2. The joint entropy for two random variables X and Y is
given by

H (X, Y ) = −
∑
x∈X

∑
y∈Y

p (x, y) log2p (x, y) = −E [log2 p (X, Y )] .
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Example 4.3. Random variables X and Y have the following joint pmf
matrix P: 

1
8

1
16

1
16

1
4

1
16

1
8

1
16 0

1
32

1
32

1
16 0

1
32

1
32

1
16 0



Find H(X), H(Y ) and H(X, Y ).

Definition 4.4. The (conditional) entropy of Y when we know X = x is
denoted by H (Y |X = x) or simply H(Y |x). It can be calculated from

H (Y |x) = −
∑
y∈Y

Q (y |x) log2Q (y |x)

• Note that the above formula is what we should expect it to be. When
we want to find the entropy of Y , we use (21):

H (Y ) = −
∑
y∈Y

q (y) log2 q (y).

When we have an extra piece of information that X = x, we should
update the probability about Y from the unconditional probability q(y)
to the conditional probability Q(y|x).

• Note that when we consider Q(y|x) with the value of x fixed and the
value of y varied, we simply get the whole x-row from Q matrix. So, to
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find H (Y |x), we simply find the “usual” entropy from the probability
values in the row corresponding to x in the Q matrix.

Example 4.5. Consider the following DMC (actually BAC)

0

1

0

1

1/2

1/2

1

X Y

/

/

Originally P [Y = y] = q(y) =


1/4, y = 0,
3/4, y = 1,
0, otherwise.

(a) Suppose we know that X = 0.

The “x = 0” row in the Q matrix gives Q (y|0) =

{
1/2, y = 0, 1,
0, otherwise;

that is, given x = 0, the RV Y will be uniform.

(b) Suppose we know that X = 1. The “x = 1” row in the Q matrix

gives Q (y|1) =

{
1, y = 1,
0, otherwise;

that is, given x = 1, the RV Y is

degenerated (deterministic).

Definition 4.6. Conditional entropy: The (average) conditional entropy
of Y when we know X is denoted by H(Y |X). It can be calculated from

H (Y |X ) =
∑
x∈X

p (x)H (Y |x).

Example 4.7. In Example 4.5,

61



Example 4.8. Easy example: a noiseless binary channel (a BSC whose
crossover probability is p = 0)

X → 0 −−−→ 0
1 −−−→ 1

→ Y

4.9. An alternative way to calculate H(Y |X) can be derived by first rewrit-
ing it as

H (Y |X ) =
∑
x∈X

p (x)H (Y |x) = −
∑
x∈X

p (x)
∑
y∈Y

Q (y |x) log2Q (y |x)

= −
∑
x∈X

∑
y∈Y

p (x, y) log2Q (y |x) = −E [log2Q (Y |X )]

Note that Q(y|x) = p(x,y)
p(x) . Therefore,

H (Y |X) = −E [log2Q (Y |X )] = −E
[
log2

p (X, Y )

p (X)

]
= (−E [log2p (X, Y )])− (−E [log2p (X)])

= H (X, Y )−H (X)

Example 4.10. In Example 4.5,

Example 4.11. Continue from Example 4.3. Recall that we got

H(X) =
7

4
, H(Y ) = 2, H(X, Y ) =

27

8
.

Find H(Y |X) and H(X|Y ).
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Definition 4.12. The mutual information18 I(X;Y ) between two ran-
dom variables X and Y is defined as

I (X;Y ) = H (X)−H (X |Y ) (22)

= H (Y )−H (Y |X ) (23)

= H (X) +H (Y )−H (X, Y ) (24)

= E
[
log2

p (X, Y )

p (X) q (Y )

]
=
∑
x∈X

∑
y∈Y

p (x, y) log
p (x, y)

p (x) q (y)
(25)

= E
[
log2

PX|Y (X |Y )

p (X)

]
= E

[
log2

Q (Y |X )

q (Y )

]
. (26)

• Mutual information quantifies the reduction in the uncertainty of one
random variable due to the knowledge of another.

• Mutual information is a measure of the amount of information one
random variable contains about another [5, p 13].

• It is also natural to think of I(X;Y ) as a measure of how far X and Y
are from being independent.

◦ Technically, it is the (Kullback-Leibler) divergence between the
joint and product-of-marginal distributions.

4.13. Some important properties

(a) H(X, Y ) = H(Y,X) and I(X;Y ) = I(Y ;X).
However, in general, H(X|Y ) 6= H(Y |X).

(b) I and H are always ≥ 0.

(c) There is a one-to-one correspondence between Shannon’s information
measures and set theory. We may use an information diagram, which

18The name mutual information and the notation I(X;Y ) was introduced by [Fano, 1961, Ch 2].
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is a variation of a Venn diagram, to represent relationship between
Shannon’s information measures. This is similar to the use of the Venn
diagram to represent relationship between probability measures. These
diagrams are shown in Figure 16.

𝐴 ∩ 𝐵 𝐵\A

𝐴 ∪ 𝐵

𝐴\B

𝐴

𝐵

𝑃 𝐴 ∩ 𝐵 𝑃 𝐵\A

𝑃 𝐴

𝑃 𝐵

𝑃 𝐴 ∪ 𝐵

𝑃 𝐴\B

𝐴

𝐵

Venn Diagram

𝐼 𝑋; 𝑌𝐻 𝑋|𝑌 𝐻 𝑌|𝑋

𝐻 𝑋

𝐻 𝑌

𝐻 𝑋, 𝑌

𝑋

𝑌

Information Diagram Probability Diagram

Figure 16: Venn diagram and its use to represent relationship between information measures
and relationship between probabilities.

• Many information-theoretic properties can be easily “read” from
the information diagram.

• Chain rule for information measures:

H (X, Y ) = H (X) +H (Y |X ) = H (Y ) +H (X |Y ) .

• Caution: In probability theory, comma (“,”) is associated with
“and” (intersection); that is, P (A,B) is the same as P (A ∩ B).)
However, for entropy, the notation is different. The use of “comma”
in H(X, Y ) turns out to represent “union” of randomness. The “in-
tersection” of randomness is denoted by semicolon (“;”) in I(X;Y ).

(d) I(X;Y ) ≥ 0 with equality if and only if X and Y are independent.

• When this property is applied to the information diagram (or def-
initions (22), (23), and (24) for I(X, Y )), we have

(i) H(X|Y ) ≤ H(X),

(ii) H(Y |X) ≤ H(Y ),

(iii) H(X, Y ) ≤ H(X) +H(Y )

Moreover, each of the inequalities above becomes equality if and
only if X |= Y .
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(e) We have seen in Section 2.4 that

0
deterministic (degenerated)

≤ H (X) ≤ log2 |X |
uniform

. (27)

Similarly,

0
deterministic (degenerated)

≤ H (Y ) ≤ log2 |Y|
uniform

. (28)

For conditional entropy, we have

0
∃g Y=g(X)

≤ H (Y |X ) ≤ H (Y )
X |= Y

(29)

and

0
∃g X=g(Y )

≤ H (X |Y ) ≤ H (X) .
X |= Y

(30)

For mutual information, we have

0
X |= Y

≤ I (X;Y ) ≤ H (X)
∃g X=g(Y )

(31)

and

0
X |= Y

≤ I (X;Y ) ≤ H (Y )
∃g Y=g(X)

. (32)

Combining 27, 28, 31, and 32, we have

0 ≤ I (X;Y ) ≤ min {H (X) , H (Y )} ≤ min {log2 |X | , log2 |Y|} (33)

(f) H (X |X ) = 0 and I(X;X) = H(X).

Example 4.14. Find the mutual information I(X;Y ) between the two ran-

dom variables X and Y whose joint pmf matrix is given by P =
[

1
2

1
4

1
4 0

]
.
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Example 4.15. Find the mutual information I(X;Y ) between the two ran-

dom variables X and Y whose p =
[

1
4 ,

3
4

]
and Q =

[
1
4

3
4

3
4

1
4

]
.

Method 1: First, convert the given information into the joint pmf matrix.

Then, I(X;Y ) = H(X) +H(Y )−H(X, Y ).

Method 2: Use I(X;Y ) = H(Y )−H(Y |X).

(a) To find H(Y ), we need q(y):

q = pQ =

[
1

4
,
3

4

][1
4

3
4

3
4

1
4

]
=

[
10

16
,

6

16

]
=

[
5

8
,
3

8

]
.

This gives H(Y ) ≈ 0.9544.

(b) H(Y |X) =
∑

x p(x)H(Y |x). So, we need H(Y |x). Observe that each
row of Q is

[
1
4

3
4

]
. Therefore,

H(Y |x) = H
([

1
4

3
4

])
≈ 0.8113

for any x (for any row of Q). This gives

H(Y |X) =
∑
x

p(x)H(Y |x) ≈
∑
x

p(x)× 0.8113

= 0.8113

(∑
x

p(x)

)
= 0.8113.

Finally,
I(X;Y ) = H(Y )−H(Y |X) ≈ 0.1432.
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